Nikhilam Multiplication (Part 5)

So how about the case when we have to simultaneously multiply together four numbers that are all close to the base? Here is the logic:

Consider numbers N_1 , N_2 , N_3 and N_4 all close to base x having respective deviations from the base of D_1 , D_2 , D_3 and D_4 which we will also call a, b, c and d.

So, we have the product of the four numbers, $p = N_1 \times N_2 \times N_3 \times N_4$

$$p = (x + a)(x + b)(x + c)(x + d)$$

$$= (x^{2} + bx + ax + ab)(x^{2} + cx + dx + ab)$$

$$= x^{4} + x^{3}(c + d) + x^{2}cd + x^{3}(a + b) + (a + b)(c + d)x^{2} + cd(a + b)x$$

$$+ abx^{2} + ab(c + d)x + abcd$$

Separately collecting together x^3 , x^2 , x and constant terms we have:

$$p = x^{3}(x + a + b + c + d) + x^{2}(ab + ac + ad + bc + bd + cd) + x(abc + abd + acd + bcd) + abcd$$

So now we have four main sections to the answer: RHS, MIDDLE-RIGHT and MIDDLE-LEFT and LHS.

So, practically speaking, there will be four parts to the calculation:

- The RHS is the product of the Deviations: a, b, c and d, aka D₁, D₂, D₃ and D₄
- The MIDDLE-RIGHT section is the sum of all the individual products of any three Deviations taken from four
- The MIDDLE-LEFT section is the sum of all the individual products of any two Deviations taken from four
- The RHS is simply one number plus the Deviations of the other three numbers

Some examples are given below.

Example 1: (97 x 93 x 94 x 98)

In this first example all four numbers are near to the base 100 and the deviations are $\overline{3}$, $\overline{7}$, $\overline{6}$. and $\overline{2}$ the LHS is the product of the Deviations and is 252. Since we have a base possessing two zeros, there are only two digits allowed on the RHS and so we will carry over the 2 to the MIDDLE-RIGHT portion which is $\overline{3} \times \overline{7} \times \overline{6} + \overline{3} \times \overline{6} \times \overline{2} + \overline{3} \times \overline{7} \times \overline{2} + \overline{7} \times \overline{6} \times \overline{2} = \overline{288}$. The MIDDLE-LEFT is $\overline{3} \times \overline{7} + \overline{3} \times \overline{6} + \overline{3} \times \overline{2} + \overline{7} \times \overline{6} + \overline{7} \times \overline{2} + \overline{6} \times \overline{2} = \overline{113}$. The LHS is simply one of the numbers plus the Deviations of the other three remaining numbers. So, let's us use $97 + \overline{7} + \overline{6} + \overline{2} = 82$.

eg.(1) 97 x 93 x 94 x 98					
Base = 100			97		03
Dasc = 100			93		<u>03</u>
			94		$\frac{07}{06}$
			98		$\frac{66}{02}$
		82/	13/	₂ 88	252
		82/	1157	200	202
	' =	83/	11/	86	52
	<u>'=</u>	83	10	14	52
83101452					

Nikhilam Multiplication of four numbers all near sub-base

So what about three numbers which are close to a sub-base? For instance how would we compute 307 x 306 x 309 x 312? First, lets go through the logic.

Let the sub-base be nx where n is some multiple, for instance 2, 3, 4 or even fractional for instance: $\frac{1}{2}$, $\frac{1}{5}$ etc. The analysis is similar to what we have previously done except that we are replacing x with nx. So, now $N_1 = nx + a$, $N_2 = nx + b$, $N_3 = nx + c$, $N_3 = nx + d$ and product p:

$$p = (nx + a)(nx + b)(nx + c)(nx + d)$$
$$= (n^2x^2 + x(na + nb) + ab) (n^2x^2 + x(nc + nd) + cd)$$

Grouping all the x^3 , x^2 , x and constant terms, we have:

$$p = n^{4}x^{4} + an^{3}x^{3} + bn^{3}x^{3} + cn^{3}x^{3} + dn^{3}x^{3} + abn^{2}x^{2} + acn^{2}x^{2} + adn^{2}x^{2} + bcn^{2}x^{2} + bdn^{2}x^{2} + cdn^{2}x^{2} + abcd + nxabc + nxabd + nxacd + nxbcd + abcd$$

$$= n^{3}x^{3}(nx + a + b + c + d) + abcd + acd + bcd + bdd + acd + bcd) + abcd$$

Fundamentally, we have a similar result as before, multiplying four numbers near the base, except that the middle-right term is multiplied by \mathbf{n} and the middle-left term is multiplied by \mathbf{n}^2 and the LHS is multiplied by \mathbf{n}^3

Example 2: (307 x 306 x 309 x 312)

eg.(2) 307 x 306 x 309 x 312					
Base = 100			307		07
Sub-Base = 300			306		06
RATIO = 3			309		09
			312		12
		$3^3 \times (334)$	3 ² x (423)/ 3	x (2286)/	4536
	= .	9018/	3807/	68 58/	4536
	=	9056	76	03	36
9056760336					