Nikhilam Multiplication (Part 4)

So how about the case when we have to simultaneously multiply together three numbers that are all close to the base. Here is the logic:

Consider numbers N_1 , N_2 and N_3 all close to base x having respective deviations from the base of D_1 , D_2 and D_3 which we will also call a, b and c.

So, we have the product of the three numbers, $p = N_1 \times N_2 \times N_3$

$$p = (x + a)(x + b)(x + c)$$

= $(x + c)(x^2 + bx + ax + ab)$
= $x(x^2 + ax + bx + ab) + c(x^2 + ax + ab + ab)$

Separately collecting together x^2 , x and constant terms we have:

$$p = x^2(x + a + b + c) + x(ab + ac + bc) + abc$$

So, practically speaking, there will be three parts to the calculation:

- The RHS is the product of the Deviations: a, b and c, aka D₁, D₂, D₃
- The middle section is the sum of the individual products of pairs of Deviations
- The RHS is simply one number plus the Deviations of the other two numbers

Some examples are given below.

Example 1: (97 x 93 x 94)

In this first example all three numbers are near to the base 100 and the deviations are $\overline{3}$, $\overline{7}$ and $\overline{6}$. The product of the Deviations is $\overline{126}$ and since we have a base possessing two zeros, there are only two digits allowed on the RHS and so we will carry over the $\overline{1}$ to the MIDDLE portion. The Middle portion is $\overline{3} \times \overline{7} + \overline{3} \times \overline{6} + \overline{7} \times \overline{6} = 81$. The LHS is simply one of the numbers plus the Deviations of the other two remaining numbers. So, let's us use $97 + \overline{7} + \overline{6} = 84$.

eg.(1) 97 x 93 x 94			
Base = 100		97	$\overline{03}$
		93	$\overline{07}$
		94	06
		84/	81/ 126
	=	84	80 26
	=	84	79 74
847974			

Example 2: (108 x 109 x 92)

In this example we have two numbers slightly more than base 100 and the other number slightly below.

eg.(2) 108 x 109 x 92			
Base = 100		108	08
		109	09
		92	08
		109	$\frac{\overline{08}}{\overline{64/} \overline{5}\overline{76}}$
	=	109	69/ 76
	=	108	30 24
1083024			

So what about three numbers which are close to a sub-base? For instance how would we compute 307 x 306 x 309? First, lets go through the logic.

Let the sub-base be nx where n is some multiple, for instance 2, 3, 4 or even fractional for instance: $\frac{1}{2}$, $\frac{1}{5}$ etc. The analysis is similar to what we have previously done except that we are replacing x with nx. So, now $\mathbf{N_1} = \mathbf{nx} + \mathbf{a}$, $\mathbf{N_2} = \mathbf{nx} + \mathbf{b}$, $\mathbf{N_3} = \mathbf{nx} + \mathbf{c}$ and product p:

$$p = (nx + a)(nx + b)(nx + c)$$

$$= nx (n^2x^2 + x(na + nb) + ab) + c (n^2x^2 + x(na + nb) + ab)$$

Grouping all the x^2 , x and constant terms, we have:

$$p = n^2x^2(nx + a + b + c) + nx(ab + ac + bc) + abc$$

Fundamentally, we have a similar result as before except that the middle term is multiplied by \mathbf{n} and the LHS is multiplied by \mathbf{n}^2

Example 3: (212 x 208 x 196)

RHS = product of the Deviations:
$$12 \times 8 \times \overline{4} = \overline{384}$$

MIDDLE term = $2 \times (12 \times 8 + 12 \times \overline{4} + 8 \times \overline{4}) = 32$
LHS = $2^2 \times (212 + 8 + \overline{4}) = 4 \times 216 = 864$

Only two digits are allowed in the RHS and MIDDLE, so we carry over terms as usual.

